
The PoC-Library Documentation
Release 1.1.6

Patrick Lehmann, Thomas B. Preusser, Martin Zabel

Apr 29, 2021





Introduction

I Introduction 1

1 What is pyIPCMI? 5
1.1 What is the History of PoC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Which Tool Chains are supported? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Why should I use PoC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Who uses PoC? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Quick Start Guide 9
2.1 Requirements and Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Configuring PoC on a Local System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Run a Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Run a Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Get Involved 15
3.1 Report a Bug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Feature Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Talk to us on Gitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Contributers License Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Contribute to PoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Give us Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 List of Contributers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II Main Documentation 19

4 Using PoC 21
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Downloading PoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Integrating PoC into Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Configuring PoC’s Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Creating my_config/my_project.vhdl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Adding IP Cores to a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9 Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Pre-Compiling Vendor Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

i



5 Third Party Libraries 53

III References 55

6 IP Core Management Infrastructure 57

IV Appendix 59

7 Change Log 61

8 Index 63

Python Module Index 65

Index 67

ii



Part I

Introduction

1





The PoC-Library Documentation, Release 1.1.6

This Python package is maintained by Patrick Lehmann.|br| https://Paebbels.GitHub.io/

PoC - “Pile of Cores” provides implementations for often required hardware functions such as Arithmetic Units,
Caches, Clock-Domain-Crossing Circuits, FIFOs, RAM wrappers, and I/O Controllers. The hardware modules
are typically provided as VHDL or Verilog source code, so it can be easily re-used in a variety of hardware designs.

All hardware modules use a common set of VHDL packages to share new VHDL types, sub-programs and con-
stants. Additionally, a set of simulation helper packages eases the writing of testbenches. Because PoC hosts a
huge amount of IP cores, all cores are grouped into sub-namespaces to build a better hierachy.

Various simulation and synthesis tool chains are supported to interoperate with PoC. To generalize all supported
free and commercial vendor tool chains, PoC is shipped with a Python based infrastructure to offer a command
line based frontend.

News

See Change Log for latest updates.

Cite the PoC-Library

The PoC-Library hosted at GitHub.com. Please use the following biblatex entry to cite us:

# BibLaTex example entry
@online{poc,

title={{PoC - Pile of Cores}},
author={{Chair of VLSI Design, Diagnostics and Architecture}},
organization={{Technische Universität Dresden}},
year={2016},
url={https://github.com/VLSI-EDA/PoC},
urldate={2016-10-28},

}

3

https://Paebbels.GitHub.io/
https://www.github.com/Paebbels/pyIPCMI
https://www.github.com
https://www.ctan.org/pkg/biblatex


The PoC-Library Documentation, Release 1.1.6

4



CHAPTER 1

What is pyIPCMI?

PoC - “Pile of Cores” provides implementations for often required hardware functions such as Arithmetic Units,
Caches, Clock-Domain-Crossing Circuits, FIFOs, RAM wrappers, and I/O Controllers. The hardware modules
are typically provided as VHDL or Verilog source code, so it can be easily re-used in a variety of hardware designs.

All hardware modules use a common set of VHDL packages to share new VHDL types, sub-programs and con-
stants. Additionally, a set of simulation helper packages eases the writing of testbenches. Because PoC hosts a
huge amount of IP cores, all cores are grouped into sub-namespaces to build a better hierachy.

Various simulation and synthesis tool chains are supported to interoperate with PoC. To generalize all supported
free and commercial vendor tool chains, PoC is shipped with a Python based Infrastruture to offer a command line
based frontend.

The PoC-Library pursues the following five goals:

• independence in the platform, target, vendor and tool chain

• generic, efficient, resource sparing and fast implementations of IP cores

• optimized for several device architectures, if suitable

• supportive scripts to ease the IP core handling with all supported vendor tools on all listed operating systems

• ship all IP cores with testbenches for local and online verification

In detail the PoC-Library is:

• synthesizable for ASIC and FPGA devices, e.g. from Altera, Lattice, Xilinx, . . . ,

• supports a wide range of simulation and synthesis tool chains, and is

• executable on several host platforms: Darwin, Linux or Windows.

This is achieved by using generic HDL descriptions, which work with most synthesis and simulation tools men-
tioned above. If this is not the case, then PoC uses vendor or tool dependent work-arounds. These work-arounds
can be different implementations switched by VHDL generate statements as well as different source files contain-
ing modified implementations.

One special feature of PoC is it, that the user has not to take care of such implementation switchings. PoC’s IP
cores decide on their own what’s the best implementation for the chosen target platform. For this feature, PoC
implements a configuration package, which accepts a well-known development board name or a target device

5



The PoC-Library Documentation, Release 1.1.6

string. For example a FPGA device string is decoded into: vendor, device, generation, family, subtype, speed
grade, pin count, etc. Out of these information, the PoC component can for example implement a vendor specific
carry-chain description to speed up an algorithm or group computation units to effectively use 6-input LUTs.

1.1 What is the History of PoC?

In the past years, a lot of “IP cores” were developed at the chair of VLSI design1 . This lose set of HDL designs was
gathered in an old-fashioned CVS repository and grow over the years to a collection of basic HDL implementations
like ALUs, FIFOs, UARTs or RAM controllers. For their final projects (bachelor, master, diploma thesis) students
got access to PoC, so they could focus more on their main tasks than wasting time in developing and testing basic
IP implementations from scratch. But the library was initially for internal and educational use only.

As a university chair for VLSI design, we have a wide range of different FPGA prototyping boards from various
vendors and device families as well as generations. So most of the IP cores were developed for both major FPGA
vendor platforms and their specific vendor tool chains. The main focus was to describe hardware in a more flexible
and generic way, so that an IP core could be reused on multiple target platforms.

As the number of cores increased, the set of common functions and types increased too. In the end PoC is not
only a collection of IP cores, its also shipped with a set of packages containing utility functions, new types and
type conversions, which are used by most of the cores. This makes PoC a library, not only a collection of IPs.

As we started to search for ways to publish IP cores and maybe the whole PoC-Library, we found several platforms
on the Internet, but none was very convincing. Some collective websites contained inactive projects, others were
controlled by companies without the possibility to contribute and the majority was a long list of private projects
with at most a handful of IP cores. Another disagreement were the used license types for these projects. We
decided to use the Apache License, because it has no copyleft rule, a patent clause and allows commercial usage.

We transformed the old CVS repository into three Git repositories: An internal repository for the full set of IP
cores (incl. classified code), a public one and a repository for examples, called PoC-Examples, both hosted on
GitHub. PoC itself can be integrated into other HDL projects as a library directory or a Git submodule. The
preferred usage is the submodule integration, which has the advantage of linked repository versions from hosting
Git and the submodule Git. This is already exemplified by our PoC-Examples repository.

1.2 Which Tool Chains are supported?

The PoC-Library and its Python-based infrastructure currently supports the following free and commercial vendor
tool chains:

• Synthesis Tool Chains:

– Altera Quartus Tested with Quartus-II ≥ 13.0. Tested with Quartus Prime ≥ 15.1.

– Intel Quartus Tested with Quartus Prime ≥ 16.1.

– Lattice Diamond Tested with Diamond ≥ 3.6.

– Xilinx ISE Only ISE 14.7 inclusive Core Generator 14.7 is supported.

– Xilinx PlanAhead Only PlanAhead 14.7 is supported.

– Xilinx Vivado Tested with Vivado ≥ 2015.4. Due to a limited VHDL language support compared to
ISE 14.7, some PoC IP cores need special work arounds. See the synthesis documention section for
Vivado for more details.

• Simulation Tool Chains:
1 The PoC-Library is published and maintained by the Chair for VLSI Design, Diagnostics and Architecture - Faculty of Computer

Science, Technische Universität Dresden, Germany http://tu-dresden.de/inf/vlsi-eda

6 Chapter 1. What is pyIPCMI?

http://tu-dresden.de/inf/vlsi-eda


The PoC-Library Documentation, Release 1.1.6

– Aldec Active-HDL Tested with Active-HDL (or Student-Edition) ≥ 10.3 Tested with Active-HDL
Lattice Edition ≥ 10.2

– Cocotb with Mentor QuestaSim backend Tested with Mentor QuestaSim 10.4d

– Mentor Graphics ModelSim Tested with ModelSim PE (or Student Edition) ≥ 10.5c Tested with
ModelSim SE ≥ 10.5c Tested with ModelSim Altera Edition 10.3d (or Starter Edition)

– Mentor Graphics QuestaSim/ModelSim Tested with Mentor QuestaSim ≥ 10.4d

– Xilinx ISE Simulator Tested with ISE Simulator (iSim) 14.7. The Python infrastructure supports
isim, but PoC’s simulation helper packages and testbenches rely on VHDL-2008 features, which are
not supported by isim.

– Xilinx Vivado Simulator Tested with Vivado Simulator (xsim) ≥ 2016.3. The Python infrastructure
supports xsim, but PoC’s simulation helper packages and testbenches rely on VHDL-2008 features,
which are not fully supported by xsim, yet.

– GHDL + GTKWave Tested with GHDL ≥ 0.34dev and GTKWave ≥ 3.3.70 Due to ungoing devel-
opment and bugfixes, we encourage to use the newest GHDL version.

1.3 Why should I use PoC?

Here is a brief list of advantages:

• We explicitly use the wording PoC-Library rather then collection, because PoC’s packages and IP cores
build an ecosystem. Complex IP cores are build on-top of basic IP cores - they are no lose set of cores. The
cores offer a clean interface and can be configured by many generic parameters.

• PoC is target independent: It’s possible to switch the target device or even the device vendor without switch-
ing the IP core.

Todo: Use a well tested set of packages to ease the use of VHDL

Use a well tested set of simulation helpers

Run testbenches in various simulators.

Run synthesis tests in varous synthesis tools.

Compare hardware usage for different target platfroms.

Supports simulation with vendor primitive libraries, ships with script to pre-compile vendor libraries.

Vendor tools have bugs, check you IP cores when a new tool release is available, before changing code base

1.4 Who uses PoC?

PoC has a related Git repository called PoC-Examples on GitHub. This repository hosts a list of example and
reference implementations of the PoC-Library. Additional to reading an IP cores documention and viewing its
characteristic stimulus waveform in a simulation, it can helper to investigate an IP core usage example from that
repository.

• The Q27 Project 27-Queens Puzzle: Massively Parellel Enumeration and Solution Counting

• Reconfigurable Cloud Computing Framework (RC2F) An FPGA computing framework for virtualization
and cloud integration.

• PicoBlaze-Library The PicoBlaze-Library offers several PicoBlaze devices and code routines to extend a
common PicoBlaze environment to a little System on a Chip (SoC or SoFPGA).

1.3. Why should I use PoC? 7

https://github.com/tgingold/ghdl/
http://gtkwave.sourceforge.net/
https://github.com/VLSI-EDA/PoC-Examples
https://github.com/preusser/q27
https://github.com/VLSI-EDA/RC2F
https://github.com/Paebbels/PicoBlaze-Library


The PoC-Library Documentation, Release 1.1.6

• PicoBlaze-Examples A SoFPGA reference implementation, based on the PoC-Library and the PicoBlaze-
Library.

8 Chapter 1. What is pyIPCMI?

https://github.com/Paebbels/PicoBlaze-Examples


CHAPTER 2

Quick Start Guide

This Quick Start Guide gives a fast and simple introduction into PoC. All topics can be found in the Using PoC
section with much more details and examples.

Contents of this Page

• Requirements and Dependencies

• Download

• Configuring PoC on a Local System

• Integration

• Run a Simulation

• Run a Synthesis

• Updating

2.1 Requirements and Dependencies

The PoC-Library comes with some scripts to ease most of the common tasks, like running testbenches or generat-
ing IP cores. PoC uses Python 3 as a platform independent scripting environment. All Python scripts are wrapped
in Bash or PowerShell scripts, to hide some platform specifics of Darwin, Linux or Windows. See Requirements
for further details.

PoC requires:

• A supported synthesis tool chain, if you want to synthezise IP cores.

• A supported simulator too chain, if you want to simulate IP cores.

• The Python 3 programming language and runtime, if you want to use PoC’s infrastructure.

• A shell to execute shell scripts:

– Bash on Linux and OS X

9



The PoC-Library Documentation, Release 1.1.6

– PowerShell on Windows

PoC optionally requires:

• Git command line tools or

• Git User Interface, if you want to check out the latest ‘master’ or ‘release’ branch.

PoC depends on third part libraries:

• THIRD:Cocotb A coroutine based cosimulation library for writing VHDL and Verilog testbenches in
Python.

• THIRD:OSVVM Open Source VHDL Verification Methodology.

• THIRD:UVVM Universal VHDL Verification Methodology.

• THIRD:VUnit An unit testing framework for VHDL.

All dependencies are available as GitHub repositories and are linked to PoC as Git submodules into the PoC-
Root\lib directory. See Third Party Libraries for more details on these libraries.

2.2 Download

The PoC-Library can be downloaded as a zip-file (latest ‘master’ branch), cloned with git clone or embed-
ded with git submodule add from GitHub. GitHub offers HTTPS and SSH as transfer protocols. See the
Download page for further details. The installation directory is referred to as PoCRoot.

Protocol Git Clone Command
HTTPS git clone --recursive https://github.com/VLSI-EDA/PoC.git PoC
SSH git clone --recursive ssh://git@github.com:VLSI-EDA/PoC.git PoC

2.3 Configuring PoC on a Local System

To explore PoC’s full potential, it’s required to configure some paths and synthesis or simulation tool chains. The
following commands start a guided configuration process. Please follow the instructions on screen. It’s possible
to relaunch the process at any time, for example to register new tools or to update tool versions. See Configuration
for more details. Run the following command line instructions to configure PoC on your local system:

cd PoCRoot
.\poc.ps1 configure

Use the keyboard buttons: to accept, to decline, to skip/pass a step and to accept a default value displayed in
brackets.

2.4 Integration

The PoC-Library is meant to be integrated into other HDL projects. Therefore it’s recommended to create a library
folder and add the PoC-Library as a Git submodule. After the repository linking is done, some short configuration
steps are required to setup paths, tool chains and the target platform. The following command line instructions
show a short example on how to integrate PoC.

10 Chapter 2. Quick Start Guide

https://github.com/potentialventures/cocotb
https://github.com/JimLewis/OSVVM
https://github.com/UVVM/UVVM_All
https://github.com/VUnit/vunit
https://github.com/VLSI-EDA/PoC/tree/master/lib
https://github.com/VLSI-EDA/PoC/tree/master/lib
https://github.com/VLSI-EDA/PoC/archive/master.zip


The PoC-Library Documentation, Release 1.1.6

1. Adding the Library as a Git submodule

The following command line instructions will create the folder lib\PoC\ and clone the PoC-Library as a Git
submodule into that folder. ProjectRoot is the directory of the hosting Git. A detailed list of steps can be
found at Integration.

cd ProjectRoot
mkdir lib | cd
git submodule add https://github.com:VLSI-EDA/PoC.git PoC
cd PoC
git remote rename origin github
cd ..\..
git add .gitmodules lib\PoC
git commit -m "Added new git submodule PoC in 'lib\PoC' (PoC-Library)."

2. Configuring PoC

The PoC-Library should be configured to explore its full potential. See Configuration for more details. The
following command lines will start the configuration process:

cd ProjectRoot
.\lib\PoC\poc.ps1 configure

3. Creating PoC’s my_config.vhdl and my_project.vhdl Files

The PoC-Library needs two VHDL files for its configuration. These files are used to determine the most suitable
implementation depending on the provided target information. Copy the following two template files into your
project’s source folder. Rename these files to *.vhdl and configure the VHDL constants in the files:

cd ProjectRoot
cp lib\PoC\src\common\my_config.vhdl.template src\common\my_config.vhdl
cp lib\PoC\src\common\my_project.vhdl.template src\common\my_project.vhdl

my_config.vhdl defines two global constants, which need to be adjusted:

constant MY_BOARD : string := "CHANGE THIS"; -- e.g. Custom, ML505,
→˓KC705, Atlys
constant MY_DEVICE : string := "CHANGE THIS"; -- e.g. None, XC5VLX50T-
→˓1FF1136, EP2SGX90FF1508C3

my_project.vhdl also defines two global constants, which need to be adjusted:

constant MY_PROJECT_DIR : string := "CHANGE THIS"; -- e.g. d:/vhdl/myproject/,
→˓ /home/me/projects/myproject/"
constant MY_OPERATING_SYSTEM : string := "CHANGE THIS"; -- e.g. WINDOWS, LINUX

Further informations are provided at Creating my_config/my_project.vhdl.

4. Adding PoC’s Common Packages to a Synthesis or Simulation Project

PoC is shipped with a set of common packages, which are used by most of its modules. These packages are stored
in the PoCRoot\src\common directory. PoC also provides a VHDL context in common.vhdl , which can
be used to reference all packages at once.

2.4. Integration 11

http://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/VLSI-EDA/PoC/blob/master/src/common/my_config.vhdl.template
https://github.com/VLSI-EDA/PoC/blob/master/src/common/my_project.vhdl.template


The PoC-Library Documentation, Release 1.1.6

5. Adding PoC’s Simulation Packages to a Simulation Project

Simulation projects additionally require PoC’s simulation helper packages, which are located in the
PoCRoot\src\sim directory. Because some VHDL version are incompatible among each other, PoC uses
version suffixes like *.v93.vhdl or *.v08.vhdl in the file name to denote the supported VHDL version of
a file.

6. Compiling Shipped IP Cores

Some IP Cores are shipped are pre-configured vendor IP Cores. If such IP cores shall be used in a HDL project,
it’s recommended to use PoC to create, compile and if needed patch these IP cores. See Synthesis for more details.

2.5 Run a Simulation

The following quick example uses the GHDL Simulator to analyze, elaborate and simulate a testbench for the
module arith_prng (Pseudo Random Number Generator - PRNG). The VHDL file arith_prng.vhdl is
located at PoCRoot\src\arith and virtually a member in the PoC.arith namespace. So the module can be
identified by an unique name: PoC.arith.prng, which is passed to the frontend script.

Example:

cd PoCRoot
.\poc.ps1 ghdl PoC.arith.prng

The CLI command ghdl chooses GHDL Simulator as the simulator and passes the fully qualified PoC entity
name PoC.arith.prng as a parameter to the tool. All required source file are gathered and compiled to an
executable. Afterwards this executable is launched in CLI mode and its outputs are displayed in console:

Each testbench uses PoC’s simulation helper packages to count asserts and to track active stimuli and checker
processes. After a completed simulation run, an report is written to STDOUT or the simulator’s console. Note the

12 Chapter 2. Quick Start Guide

/_static/images/ghdl/arith_prng_tb.posh.png:alt:PowerShellconsoleoutputafterrunningPoC.arith.prngwithGHDL.


The PoC-Library Documentation, Release 1.1.6

line SIMULATION RESULT = PASSED. For each simulated PoC entity, a line in the overall report is created.
It lists the runtime per testbench and the simulation status (... ERROR, FAILED, NO ASSERTS or PASSED).
See Simulation for more details.

2.6 Run a Synthesis

The following quick example uses the Xilinx Systesis Tool (XST) to synthesize a netlist for IP core
arith_prng (Pseudo Random Number Generator - PRNG). The VHDL file arith_prng.vhdl is located
at PoCRoot\src\arith and virtually a member in the PoC.arith namespace. So the module can be identified
by an unique name: PoC.arith.prng, which is passed to the frontend script.

Example:

cd PoCRoot
.\poc.ps1 xst PoC.arith.prng --board=KC705

The CLI command xst chooses Xilinx Synthesis Tool as the synthesizer and passes the fully qualified PoC entity
name PoC.arith.prng as a parameter to the tool. Additionally, the development board name is required to
load the correct my_config.vhdl file. All required source file are gathered and synthesized to a netlist.

2.7 Updating

The PoC-Library can be updated by using git fetch and git merge.

cd PoCRoot
# update the local repository
git fetch --prune
# review the commit tree and messages, using the 'treea' alias
git treea
# if all changes are OK, do a fast-forward merge
git merge

See also:

2.6. Run a Synthesis 13

/_static/images/xst/arith_prng.posh.png:alt:PowerShellconsoleoutputafterrunningPoC.arith.prngwithXST.


The PoC-Library Documentation, Release 1.1.6

Running one or more testbenches The installation can be checked by running one or more of PoC’s testbenches.

Running one or more netlist generation flows The installation can also be checked by running one or more of
PoC’s synthesis flows.

14 Chapter 2. Quick Start Guide



CHAPTER 3

Get Involved

A first step might be to use and explore PoC and it’s infrastructure in an own project. Moreover, we encurage
to read our online help which covers all aspects from quickstart example up to detailed IP core documentation.
While using PoC, you might discover issues or missing feature. Please report them as listed below. If you have an
interresting project, please send us feedback or get listed on our Who uses PoC? page.

If you are more familiar with PoC and it’s components, you might start asking youself how components internally
work. Please read our more advanced topics in the online help, read our inline source code comments or start a
discussion on Gitter to ask us directly.

Now you should be very familiar with our work and you might be interessted in developing own components and
contribute them to the main repository. See the next section for detailed instructions on the Git fork, commit, push
and pull-request flow.

PoC ships some third-party libraries. If you are interessted in getting your library or components shipped as part
of PoC or as a third-party components, please contact us.

3.1 Report a Bug

Please report issues of any kind in our Git provider’s issue tracker. This allows us to categorize issues into groups
and assign developers to them. You can track the issue’s state and see how it’s getting solved. All enhancements
and feature requests are tracked on GitHub at GitHub Issues.

3.2 Feature Request

Please report missing features of any kind. We are allways looking forward to provide a full feature set. Please
use our Git provider’s issue tracker to report enhancements and feature requests, so you can track the request’s
status and implementation. All enhancements and feature requests are tracked on GitHub at GitHub Issues.

15

https://github.com/VLSI-EDA/PoC/issues
https://github.com/VLSI-EDA/PoC/issues
https://github.com/VLSI-EDA/PoC/issues
https://github.com/VLSI-EDA/PoC/issues


The PoC-Library Documentation, Release 1.1.6

3.3 Talk to us on Gitter

You can chat with us on Gitter in our Giiter Room VLSI-EDA/PoC. You can use Gitter for free with your existing
GitHub or Twitter account.

3.4 Contributers License Agreement

We require all contributers to sign a Contributor License Agreement (CLA). If you don’t know whatfore a CLA is
needed and how it prevents legal issues on both sides, read this short blog post. PoC uses the Apache Contributor
License Agreement to match the Apache License 2.0.

So to get started, sign the Contributor License Agreement (CLA) at CLAHub.com. You can authenticate yourself
with an existing GitHub account.

3.5 Contribute to PoC

Contibuting source code via Git is very easy. We don’t provide direct write access to our repositories. Git
offers the fork and pull-request philosophy, which means: You clone a repository, provide your changes in your
own repository and notify us about outstanding changes via a pull-requests. We will then review your proposed
changes and integrate them into our repository.

Steps 1 to 5 are done only once for setting up a forked repository.

3.5.1 1. Fork the PoC Repository

Git repositories can be cloned on a Git provider’s server. This procedure is called forking. This allows Git
providers to track the repository’s network, check if repositories are related to each other and notify if pull-requests
are available.

Fork our repository VLSI-EDA/PoC on GitHub into your or your’s Git organisation’s account. In the following
the forked repository is referenced as <username>/PoC.

3.5.2 2. Clone the new Fork

Clone this new fork to your machine. See Downloading via Git clone for more details on how to clone PoC. If you
have already cloned PoC, then you can setup the new fork as an additional remote. You should set VLSI-EDA/
PoC as fetch target and the new fork <username>/PoC as push target.

Shell Commands for Cloning:

cd GitRoot
git clone --recursive "ssh://git@github.com:<username>/PoC.git" PoC
cd PoC
git remote rename origin github
git remote add upstream "ssh://git@github.com:VLSI-EDA/PoC.git"
git fetch --prune --tags

Shell Commands for Editing an existing Clone:

16 Chapter 3. Get Involved

https://gitter.im/VLSI-EDA/PoC
https://gitter.im/
https://gitter.im/VLSI-EDA/PoC
https://www.clahub.com/pages/why_cla
https://www.clahub.com/agreements/VLSI-EDA/PoC
https://www.clahub.com/
https://github.com/VLSI-EDA/PoC/network/members


The PoC-Library Documentation, Release 1.1.6

cd PoCRoot
git remote rename github upstream
git remote add github "ssh://git@github.com:<username>/PoC.git"
git fetch --prune --tags

These commands work for Git submodules too.

3.5.3 3. Checkout a Branch

Checkout the master or release branch and maybe stash outstanding changes.

cd PoCRoot
git checkout release

3.5.4 4. Setup PoC for Developers

Run PoC’s configuration routines and setup the developer tools.

cd PoCRoot
.\PoC.ps1 configure git

3.5.5 5. Create your own master Branch

Each developer has his own master branch. So create one and check it out.

cd PoCRoot
git branch <username>/master
git checkout <username>/master
git push github <username>/master

If PoC’s branches are moving forward, you can update your own master branch by merging changes into your
branch.

3.5.6 6. Create your Feature Branch

Each new feature or bugfix is developed on a feature branch. Examples for branch names:

Branch name Description
bugfix-utils Fixes a bug in utils.vhdl.
docs-spelling Fixes the documentation.
spi-controller A new SPI controller implementation.

cd PoCRoot
git branch <username>/<feature>
git checkout <username>/<feature>
git push github <username>/<feature>

3.5.7 7. Commit and Push Changes

Commit your porposed changes onto your feature branch and push all changes to GitHub.

3.5. Contribute to PoC 17



The PoC-Library Documentation, Release 1.1.6

cd PoCRoot
# git add ....
git commit -m "Fixed a bug in function bounds() in utils.vhdl."
git push github <username>/<feature>

3.5.8 8. Create a Pull-Request

Go to your forked repository and klick on “Compare and Pull-Request” or go to our PoC repository and create a
new pull request.

If this is your first Pull-Request, you need to sign our Contributers License Agreement (CLA).

3.5.9 9. Keep your master up-to-date

Todo: undocumented

3.6 Give us Feedback

Please send us feedback about the PoC documentation, our IP cores or your user story on how you use PoC.

3.7 List of Contributers

Contributor1 Contact E-Mail
Genßler, Paul paul.genssler@tu-dresden.de
Köhler, Steffen steffen.koehler@tu-dresden.de
Lehmann, Patrick2 patrick.lehmann@tu-dresden.de; paebbels@gmail.com
Preußer, Thomas B.2 thomas.preusser@tu-dresden.de; thomas.preusser@utexas.edu
Reichel, Peter peter.reichel@eas.iis.fraunhofer.de; peter@peterreichel.info
Schirok, Jan janschirok@gmx.net
Voß, Jens jens.voss@mailbox.tu-dresden.de
Zabel, Martin2 martin.zabel@tu-dresden.de

1 In alphabetical order.
2 Maintainer.

18 Chapter 3. Get Involved

https://github.com/VLSI-EDA/PoC/pulls
https://github.com/VLSI-EDA/PoC/pulls
https://github.com/VLSI-EDA/PoC/pulls
mailto:paul.genssler@tu-dresden.de
mailto:steffen.koehler@tu-dresden.de
mailto:patrick.lehmann@tu-dresden.de
mailto:paebbels@gmail.com
mailto:thomas.preusser@tu-dresden.de
mailto:thomas.preusser@utexas.edu
mailto:peter.reichel@eas.iis.fraunhofer.de
mailto:peter@peterreichel.info
mailto:janschirok@gmx.net
mailto:jens.voss@mailbox.tu-dresden.de
mailto:martin.zabel@tu-dresden.de


Part II

Main Documentation

19





CHAPTER 4

Using PoC

PoC can be used in several ways, if all Requirements are fulfilled. Chose one of the following integration kinds:

• Stand-Alone IP Core Library: Download PoC as archive file (*.zip) from GitHub as latest branch copy
or as tagged release file. IP cores can be copyed into one or more destination projects or the projects
link to the selected IP core source files.

Advantages:

– Simple and fast setup, configuring PoC is optional.

– Needs less disk space than a Git repository.

– After a configuration, PoC’s additional features: simulation, synthesis, etc. can be used.

Disadvantages:

– Manual updating via download and file overwrites.

– Updated IP cores need to be copyed again into the destination project.

– Using different PoC versions in different projects is not possible.

– No possibility to contribute bugfixes and extensions via Git pull requests.

Next steps: 1. See Downloads for how to download a stand-alone version (*.zip-file) of the PoC-
Library. 2. See Configuration for how to configure PoC on a local system.

• Stand-Alone IP Core Library cloned from Git: Download PoC via git clone from GitHub as latest
branch copy. IP cores can be copyed into one or more destination projects or the projects link to the
selected IP core source files.

Advantages:

– Simple and fast setup, configuring PoC is optional.

– Access to the newest commits on a branch: New IP cores, new features, bugfixes.

– Fast and simple updates via git pull.

– After a configuration, PoC’s additional features: simulation, synthesis, etc. can be used.

– Contribute bugfixes and extensions via Git pull requests.

Disadvantages:

– Updated IP cores need to be copyed again into the destination project.

21



The PoC-Library Documentation, Release 1.1.6

– Using different PoC versions in different projects is not possible

Next steps: 1. See Downloads for how to clone a stand-alone version of the PoC-Library. 2. See
Configuration for how to configure PoC on a local system.

• Embedded IP Core Library as Git Submodule: Integrate PoC as a Git submodule into the destination
projects Git repository.

Advantages:

– Simple and fast setup, configuring PoC is optional, but recommended.

– Access to the newest commits on a branch: New IP cores, new features, bugfixes.

– Fast and simple updates via git pull.

– After a configuration, PoC’s additional features: simulation, synthesis, etc. can be used.

– Moreover, some PoC infrastructure features can be used in the hosting repository and project as
well.

– Contribute bugfixes and extensions via Git pull requests.

– Version linking between hosting Git and PoC.

Next steps: 1. See Integration for how to integrate PoC as a Git submodule into an existing Git. 2.
See Configuration for how to configure PoC on a local system.

4.1 Requirements

Contents of this Page

• Common requirements:

• Linux specific requirements:

– Optional Tools on Linux:

• Mac OS specific requirements:

– Optional Tools on Mac OS:

• Windows specific requirements:

– Optional Tools on Windows:

The PoC-Library comes with some scripts to ease most of the common tasks, like running testbenches or generat-
ing IP cores. We choose to use Python 3 as a platform independent scripting environment. All Python scripts are
wrapped in Bash or PowerShell scripts, to hide some platform specifics of Darwin, Linux or Windows.

4.1.1 Common requirements:

Programming Languages and Runtime Environments:

• Python 3 (≥ 3.5):

– colorama

– py-flags

All Python requirements are listed in requirements.txt and can be installed via: sudo python3.5
-m pip install -r requirements.txt

Synthesis tool chains:

• Altera Quartus II ≥ 13.0 or

22 Chapter 4. Using PoC

https://www.python.org/downloads/
https://pypi.python.org/pypi/colorama
https://pypi.python.org/pypi/py-flags
https://github.com/VLSI-EDA/PoC/blob/master/requirements.txt


The PoC-Library Documentation, Release 1.1.6

• Altera Quartus Prime ≥ 15.1 or

• Intel Quartus Prime ≥ 16.1 or

• Lattice Diamond ≥ 3.6 or

• Xilinx ISE 14.71 or

• Xilinx Vivado ≥ 2016.32

Simulation tool chains

• Aldec Active-HDL (or Student Edition) or

• Aldec Active-HDL Lattice Edition or

• Mentor Graphics ModelSim PE (or Student Edition) or

• Mentor Graphics ModelSim SE or

• Mentor Graphics ModelSim Altera Edition or

• Mentor Graphics QuestaSim or

• Xilinx ISE Simulator 14.7 or

• Xilinx Vivado Simulator ≥ 2016.33 or

• GHDL ≥ 0.34dev and GTKWave ≥ 3.3.70

4.1.2 Linux specific requirements:

Debian and Ubuntu specific:

• bash is configured as /bin/sh (read more) dpkg-reconfigure dash

Optional Tools on Linux:

Git The command line tools to manage Git repositories. It’s possible to extend the shell prompt with Git infor-
mation.

SmartGit A Git client to handle complex Git flows in a GUI.

Generic Colouriser (grc) ≥ 1.9 Colorizes outputs of foreign scripts and programs. GRC is hosted on GitHub
The latest *.deb installation packages can be downloaded here.

4.1.3 Mac OS specific requirements:

Bash ≥ 4.3 Mac OS is shipped with Bash 3.2. Use Homebrew to install an up-to-date Bash brew install
bash

coreutils Mac OS’ readlink program has a different behavior than the Linux version. The coreutils
package installs a GNU readlink clone called greadlink. brew install coreutils

1 Xilinx discontinued ISE since Oct. 2013. The last release was 14.7.
2 Due to numerous bugs in the Xilinx Vivado Synthesis (incl. 2016.1), PoC can offer only a restricted Vivado support. See PoC’s Vivado

branch for a set of workarounds. The list of issues is documented on the Known Issues page.
3 Due to numerous bugs in the Xilinx Simulator (incl. 2016.1), PoC can offer only a restricted Vivado support. The list of issues is

documented on the Known Issues page.

4.1. Requirements 23

https://github.com/tgingold/ghdl
http://gtkwave.sourceforge.net/
https://wiki.debian.org/DashAsBinSh
http://kassiopeia.juls.savba.sk/~garabik/software/grc.html
https://github.com/garabik/grc
http://kassiopeia.juls.savba.sk/~garabik/software/grc/


The PoC-Library Documentation, Release 1.1.6

Optional Tools on Mac OS:

Git The command line tools to manage Git repositories. It’s possible to extend the shell prompt with Git infor-
mation.

SmartGit or SourceTree A Git client to handle complex Git flows in a GUI.

Generic Colouriser (grc) ≥ 1.9 Colorizes outputs of foreign scripts and programs. GRC is hosted on GitHub
brew install Grc

4.1.4 Windows specific requirements:

PowerShell

• Allow local script execution (read more) PS> Set-ExecutionPolicy RemoteSigned

• PowerShell ≥ 5.0 (recommended) PowerShell 5.0 is shipped since Windows 10. It is a part if the
Windows Management Framework 5.0 (WMF). Windows 7 and 8/8.1 can be updated to WMF 5.0. The
package does not include PSReadLine, which is included in the Windows 10 PowerShell environment.
Install PSReadLine manually: PS> Install-Module PSReadline.

• PowerShell 4.0 PowerShell is shipped with Windows since Vista. If the required version not already
included in Windows, it can be downloaded from Microsoft.com: WMF 4.0

Optional Tools on Windows:

PowerShell ≥ 4.0

• PSReadLine replaces the command line editing experience in PowerShell for versions 3 and up.

• PowerShell Community Extensions (PSCX) ≥ 3.2 The latest PSCX can be downloaded from Pow-
erShellGallery PS> Install-Module Pscx Note: PSCX ≥ 3.2.1 is required for PowerShell ≥
5.0.

Git (MSys-Git) The command line tools to manage Git repositories.

SmartGit or SourceTree A Git client to handle complex Git flows in a GUI.

posh-git PowerShell integration for Git PS> Install-Module posh-git

4.2 Downloading PoC

Contents of this Page

• Downloading from GitHub

• Downloading via git clone

– On Linux

– On OS X

– On Windows

• Downloading via git submodule add

– On Linux

– On OS X

– On Windows

24 Chapter 4. Using PoC

http://kassiopeia.juls.savba.sk/~garabik/software/grc.html
https://github.com/garabik/grc
https://technet.microsoft.com/en-us/library/hh849812.aspx
https://www.microsoft.com/en-US/download/details.aspx?id=50395
http://www.microsoft.com/en-US/download/details.aspx?id=40855
https://www.powershellgallery.com/packages/Pscx/
https://www.powershellgallery.com/packages/Pscx/
https://github.com/dahlbyk/posh-git


The PoC-Library Documentation, Release 1.1.6

4.2.1 Downloading from GitHub

The PoC-Library can be downloaded as a zip-file from GitHub. See the following table, to choose your desired
git branch.

Branch Download Link

master zip-file

release zip-file

4.2.2 Downloading via git clone

The PoC-Library can be downloaded (cloned) with git clone from GitHub. GitHub offers the transfer proto-
cols HTTPS and SSH. You should use SSH if you have a GitHub account and have already uploaded an OpenSSH
public key to GitHub, otherwise use HTTPS if you have no account or you want to use login credentials.

The created folder <GitRoot>\PoC is used as <PoCRoot> in later instructions or on other pages in this
documentation.

Protocol GitHub Repository URL
HTTPS https://github.com/VLSI-EDA/PoC.git
SSH ssh://git@github.com:VLSI-EDA/PoC.git

On Linux

Command line instructions to clone the PoC-Library onto a Linux machine with HTTPS protocol:

cd GitRoot
git clone --recursive "https://github.com/VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github

Command line instructions to clone the PoC-Library onto a Linux machine machine with SSH protocol:

cd GitRoot
git clone --recursive "ssh://git@github.com:VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github

On OS X

Please see the Linux instructions.

On Windows

Note: All Windows command line instructions are intended for Windows PowerShell, if not marked other-
wise. So executing the following instructions in Windows Command Prompt (cmd.exe) won’t function or result
in errors! See the Requirements section on where to download or update PowerShell.

Command line instructions to clone the PoC-Library onto a Windows machine with HTTPS protocol:

4.2. Downloading PoC 25

https://github.com/VLSI-EDA/PoC/archive/master.zip
https://github.com/VLSI-EDA/PoC/archive/release.zip
https://github.com/VLSI-EDA/PoC.git
ssh://git@github.com:VLSI-EDA/PoC.git


The PoC-Library Documentation, Release 1.1.6

cd GitRoot
git clone --recursive "https://github.com/VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github

Command line instructions to clone the PoC-Library onto a Windows machine with SSH protocol:

cd GitRoot
git clone --recursive "ssh://git@github.com:VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github

Note: The option --recursive performs a recursive clone operation for all linked git submodules. An
additional git submodule init and git submodule update call is not needed anymore.

4.2.3 Downloading via git submodule add

The PoC-Library is meant to be integrated into other HDL projects (preferably Git versioned projects). Therefore
it’s recommended to create a library folder and add the PoC-Library as a git submodule.

The following command line instructions will create a library folder :file:‘lib‘ and clone PoC as a git submodule
into the subfolder :file:‘<ProjectRoot>libPoC‘.

On Linux

Command line instructions to clone the PoC-Library onto a Linux machine with HTTPS protocol:

cd ProjectRoot
mkdir lib
git submodule add "https://github.com/VLSI-EDA/PoC.git" lib/PoC
cd lib/PoC
git remote rename origin github
cd ../..
git add .gitmodules lib/PoC
git commit -m "Added new git submodule PoC in 'lib/PoC' (PoC-Library)."

Command line instructions to clone the PoC-Library onto a Linux machine machine with SSH protocol:

cd ProjectRoot
mkdir lib
git submodule add "ssh://git@github.com:VLSI-EDA/PoC.git" lib/PoC
cd lib/PoC
git remote rename origin github
cd ../..
git add .gitmodules lib/PoC
git commit -m "Added new git submodule PoC in 'lib/PoC' (PoC-Library)."

On OS X

Please see the Linux instructions.

On Windows

26 Chapter 4. Using PoC

http://git-scm.com/book/en/v2/Git-Tools-Submodules
http://git-scm.com/book/en/v2/Git-Tools-Submodules


The PoC-Library Documentation, Release 1.1.6

Note: All Windows command line instructions are intended for Windows PowerShell, if not marked other-
wise. So executing the following instructions in Windows Command Prompt (cmd.exe) won’t function or result
in errors! See the Requirements section on where to download or update PowerShell.

Command line instructions to clone the PoC-Library onto a Windows machine with HTTPS protocol:

cd <ProjectRoot>
mkdir lib | cd
git submodule add "https://github.com/VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github
cd ..\..
git add .gitmodules lib\PoC
git commit -m "Added new git submodule PoC in 'lib\PoC' (PoC-Library)."

Command line instructions to clone the PoC-Library onto a Windows machine with SSH protocol:

cd <ProjectRoot>
mkdir lib | cd
git submodule add "ssh://git@github.com:VLSI-EDA/PoC.git" PoC
cd PoC
git remote rename origin github
cd ..\..
git add .gitmodules lib\PoC
git commit -m "Added new git submodule PoC in 'lib\PoC' (PoC-Library)."

4.3 Integrating PoC into Projects

Contents of this page

• As a Git submodule

– On Linux

– On OS X

– On Windows

4.3.1 As a Git submodule

The following command line instructions will integrate PoC into a existing Git repository and register PoC as a
Git submodule. Therefore a directory lib\PoC\ is created and the PoC-Library is cloned as a Git submodule
into that directory.

On Linux

cd ProjectRoot
mkdir lib
cd lib
git submodule add https://github.com/VLSI-EDA/PoC.git PoC
cd PoC
git remote rename origin github
cd ../..
git add .gitmodules lib\PoC
git commit -m "Added new git submodule PoC in 'lib/PoC' (PoC-Library)."

4.3. Integrating PoC into Projects 27



The PoC-Library Documentation, Release 1.1.6

On OS X

Please see the Linux instructions.

On Windows

Note: All Windows command line instructions are intended for Windows PowerShell, if not marked other-
wise. So executing the following instructions in Windows Command Prompt (cmd.exe) won’t function or result
in errors! See the Requirements section on where to download or update PowerShell.

cd ProjectRoot
mkdir lib | cd
git submodule add https://github.com/VLSI-EDA/PoC.git PoC
cd PoC
git remote rename origin github
cd ..\..
git add .gitmodules lib\PoC
git commit -m "Added new git submodule PoC in 'lib\PoC' (PoC-Library)."

See also:

Configuring PoC on a Local System

Create PoC’s VHDL Configuration Files

4.4 Configuring PoC’s Infrastructure

To explore PoC’s full potential, it’s required to configure some paths and synthesis or simulation tool chains. It’s
possible to relaunch the process at any time, for example to register new tools or to update tool versions.

Contents of this page

• Overview

• The PoC-Library

• Git

• Aldec

– Active-HDL

• Altera

– Quartus

– ModelSim Altera Edition

• Lattice

– Diamond

– Active-HDL Lattice Edition

• Mentor Graphics

– QuestaSim

• Xilinx

– ISE

28 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

– Vivado

• GHDL

• GTKWave

• Hook Files

4.4.1 Overview

The setup process is started by invoking PoC’s frontend script with the command configure. Please follow the
instructions on screen. Use the keyboard buttons: to accept, to decline, to skip/pass a step and to accept a default
value displayed in brackets.

Optionally, a vendor or tool chain name can be passed to the configuration process to launch only its configuration
routines.

On Linux:

cd ProjectRoot
./lib/PoC/poc.sh configure
# with tool chain name
./lib/PoC/poc.sh configure Xilinx.Vivado

On OS X

Please see the Linux instructions.

On Windows

Note: All Windows command line instructions are intended for Windows PowerShell, if not marked other-
wise. So executing the following instructions in Windows Command Prompt (cmd.exe) won’t function or result
in errors! See the Requirements section on where to download or update PowerShell.

cd ProjectRoot
.\lib\PoC\poc.ps1 configure
# with tool chain name
.\lib\PoC\poc.ps1 configure Xilinx.Vivado

Introduction screen:

PS D:\git\PoC> .\poc.ps1 configure
================================================================================

The PoC-Library - Service Tool
================================================================================
Explanation of abbreviations:

Y - yes P - pass (jump to next question)
N - no Ctrl + C - abort (no changes are saved)

Upper case or value in '[...]' means default value
--------------------------------------------------------------------------------

Configuring PoC
PoC version: v1.0.1 (found in git)
Installation directory: D:\git\PoC (found in environment variable)

4.4.2 The PoC-Library

PoC itself has a fully automated configuration routine. It detects if PoC is under Git control. If so, it extracts the
current version number from the latest Git tag. The installation directory is infered from $PoCRootDirectory
setup by PoC.ps1 or poc.sh.

4.4. Configuring PoC’s Infrastructure 29



The PoC-Library Documentation, Release 1.1.6

Configuring PoC
PoC version: v1.0.1 (found in git)
Installation directory: D:\git\PoC (found in environment variable)

4.4.3 Git

Note: Setting up Git and Git developer settings, is an advanced feature recommended for all developers interrested
in providing Git pull requests or patches.

Configuring Git
Git installation directory [C:\Program Files\Git]:
Install Git mechanisms for PoC developers? [y/N/p]: y
Install Git filters? [Y/n/p]:
Installing Git filters...
Install Git hooks? [Y/n/p]:
Installing Git hooks...
Setting 'pre-commit' hook for PoC...

4.4.4 Aldec

Configure the installation directory for all Aldec tools.

Configuring Aldec
Are Aldec products installed on your system? [Y/n/p]: Y
Aldec installation directory [C:\Aldec]:

Active-HDL

Configuring Aldec Active-HDL
Is Aldec Active-HDL installed on your system? [Y/n/p]: Y
Aldec Active-HDL version [10.3]:
Aldec Active-HDL installation directory [C:\Aldec\Active-HDL]: C:\Aldec\Active-

→˓HDL-Student-Edition

4.4.5 Altera

Configure the installation directory for all Altera tools.

Configuring Altera
Are Altera products installed on your system? [Y/n/p]: Y
Altera installation directory [C:\Altera]:

Quartus

Configuring Altera Quartus
Is Altera Quartus-II or Quartus Prime installed on your system? [Y/n/p]: Y
Altera Quartus version [15.1]: 16.0
Altera Quartus installation directory [C:\Altera\16.0\quartus]:

30 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

ModelSim Altera Edition

Configuring ModelSim Altera Edition
Is ModelSim Altera Edition installed on your system? [Y/n/p]: Y
ModelSim Altera Edition installation directory [C:\Altera\15.0\modelsim_ae]:

→˓C:\Altera\16.0\modelsim_ase

4.4.6 Lattice

Configure the installation directory for all Lattice Semiconductor tools.

Configuring Lattice
Are Lattice products installed on your system? [Y/n/p]: Y
Lattice installation directory [D:\Lattice]:

Diamond

Configuring Lattice Diamond
Is Lattice Diamond installed on your system? [Y/n/p]: >
Lattice Diamond version [3.7]:
Lattice Diamond installation directory [D:\Lattice\Diamond\3.7_x64]:

Active-HDL Lattice Edition

Configuring Active-HDL Lattice Edition
Is Aldec Active-HDL installed on your system? [Y/n/p]: Y
Active-HDL Lattice Edition version [10.2]:
Active-HDL Lattice Edition installation directory [D:\Lattice\Diamond\3.7_

→˓x64\active-hdl]:

4.4.7 Mentor Graphics

Configure the installation directory for all mentor Graphics tools.

Configuring Mentor
Are Mentor products installed on your system? [Y/n/p]: Y
Mentor installation directory [C:\Mentor]:

QuestaSim

Configuring Mentor QuestaSim
Is Mentor QuestaSim installed on your system? [Y/n/p]: Y
Mentor QuestaSim version [10.4d]: 10.4c
Mentor QuestaSim installation directory [C:\Mentor\QuestaSim\10.4c]:

→˓C:\Mentor\QuestaSim64\10.4c

4.4.8 Xilinx

Configure the installation directory for all Xilinx tools.

4.4. Configuring PoC’s Infrastructure 31



The PoC-Library Documentation, Release 1.1.6

Configuring Xilinx
Are Xilinx products installed on your system? [Y/n/p]: Y
Xilinx installation directory [C:\Xilinx]:

ISE

If an Xilinx ISE environment is available and shall be configured in PoC, then answer the following questions:

Configuring Xilinx ISE
Is Xilinx ISE installed on your system? [Y/n/p]: Y
Xilinx ISE installation directory [C:\Xilinx\14.7\ISE_DS]:

Vivado

If an Xilinx ISE environment is available and shall be configured in PoC, then answer the following questions:

Configuring Xilinx Vivado
Is Xilinx Vivado installed on your system? [Y/n/p]: Y
Xilinx Vivado version [2016.2]:
Xilinx Vivado installation directory [C:\Xilinx\Vivado\2016.2]:

4.4.9 GHDL

Configuring GHDL
Is GHDL installed on your system? [Y/n/p]: Y
GHDL installation directory [C:\Tools\GHDL\0.34dev]:

4.4.10 GTKWave

Configuring GTKWave
Is GTKWave installed on your system? [Y/n/p]: Y
GTKWave installation directory [C:\Tools\GTKWave\3.3.71]:

4.4.11 Hook Files

PoC’s wrapper scripts can be customized through pre- and post-hook file. See Wrapper Script Hook Files for more
details.

4.5 Creating my_config/my_project.vhdl

The PoC-Library needs two VHDL files for its configuration. These files are used to determine the most suitable
implementation depending on the provided platform information. These files are also used to select appropiate
work arounds.

4.5.1 Create my_config.vhdl

The my_config.vhdl file can easily be created from the template file my_config.vhdl.template provided
by PoC in PoCRoot\src\common. (View source on GitHub.) Copy this file into the project’s source directory
and rename it to my_config.vhdl.

32 Chapter 4. Using PoC

https://github.com/VLSI-EDA/PoC/blob/master/src/common/my_config.vhdl.template


The PoC-Library Documentation, Release 1.1.6

This file should be included in version control systems and shared with other systems. my_config.vhdl
defines three global constants, which need to be adjusted:

constant MY_BOARD : string := "CHANGE THIS"; -- e.g. Custom, ML505, KC705, Atlys
constant MY_DEVICE : string := "CHANGE THIS"; -- e.g. None, XC5VLX50T-1FF1136,
→˓EP2SGX90FF1508C3
constant MY_VERBOSE : boolean := FALSE; -- activate report statements in
→˓VHDL subprograms

The easiest way is to define a board name and set MY_DEVICE to None. So the device name is infered from the
board information stored in PoCRoot\src\common\config.vhdl. If the requested board is not known to
PoC or it’s custom made, then set MY_BOARD to Custom and MY_DEVICE to the full FPGA device string.

Example 1: A “Stratix II GX Audio Video Development Kit” board:

constant MY_BOARD : string := "S2GXAV"; -- Stratix II GX Audio Video Development
→˓Kit
constant MY_DEVICE : string := "None"; -- infer from MY_BOARD

Example 2: A custom made Spartan-6 LX45 board:

constant MY_BOARD : string := "Custom";
constant MY_DEVICE : string := "XC6SLX45-3CSG324";

4.5.2 Create my_project.vhdl

The my_project.vhdl file can also be created from a template file my_project.vhdl.template provided
by PoC in PoCRoot\src\common.

The file should to be copyed into a projects source directory and renamed into my_project.vhdl. This file
must not be included into version control systems – it’s private to a computer. my_project.vhdl defines two
global constants, which need to be adjusted:

constant MY_PROJECT_DIR : string := "CHANGE THIS"; -- e.g. "d:/vhdl/myproject/
→˓", "/home/me/projects/myproject/"
constant MY_OPERATING_SYSTEM : string := "CHANGE THIS"; -- e.g. "WINDOWS", "LINUX"

Example 1: A Windows System:

constant MY_PROJECT_DIR : string := "D:/git/GitHub/PoC/";
constant MY_OPERATING_SYSTEM : string := "WINDOWS";

Example 2: A Debian System:

constant MY_PROJECT_DIR : string := "/home/paebbels/git/GitHub/PoC/";
constant MY_OPERATING_SYSTEM : string := "LINUX";

See also:

Running one or more testbenches The installation can be checked by running one or more of PoC’s testbenches.

Running one or more netlist generation flows The installation can also be checked by running one or more of
PoC’s synthesis flows.

4.6 Adding IP Cores to a Project

4.6.1 Manually Addind IP Cores

Adding IP Cores to Altera Quartus

4.6. Adding IP Cores to a Project 33



The PoC-Library Documentation, Release 1.1.6

Todo: No documentation available.

Adding IP Cores to Lattice Diamond

Todo: No documentation available.

Adding IP Cores to Xilinx ISE

Todo: No documentation available.

Adding IP Cores to Xilinx Vivado

Todo: No documentation available.

4.7 Simulation

Contents of this Page

• Overview

• Quick Example

• Vendor Specific Testbenches

• Running a Single Testbench

– Aldec Active-HDL

– Cocotb with QuestaSim backend

– GHDL (plus GTKwave)

– Mentor Graphics QuestaSim

– Xilinx ISE Simulator

– Xilinx Vivado Simulator

• Running a Group of Testbenches

• Continuous Integration (CI)

4.7.1 Overview

The Python Infrastructure shipped with the PoC-Library can launch manual, half-automated and fully automated
testbenches. The testbench can be run in command line or GUI mode. If available, the used simulator is launched
with pre-configured waveform files. This can be done by invoking one of PoC’s frontend script:

• poc.sh: poc.sh <common options> <simulator> <module> <simulator options>
Use this fronend script on Darwin, Linux and Unix platforms.

34 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

• poc.ps1: poc.ps1 <common options> <simulator> <module> <simulator
options> Use this frontend script Windows platforms.

Attention: All Windows command line instructions are intended for Windows PowerShell, if not
marked otherwise. So executing the following instructions in Windows Command Prompt (cmd.exe)
won’t function or result in errors!

See also:

PoC Configuration See the Configuration page on how to configure PoC and your installed simulator tool chains.
This is required to invoke the simulators.

Supported Simulators See the Intruction page for a list of supported simulators.

4.7.2 Quick Example

The following quick example uses the GHDL Simulator to analyze, elaborate and simulate a testbench for the
module arith_prng (Pseudo Random Number Generator - PRNG). The VHDL file arith_prng.vhdl is
located at PoCRoot\src\arith and virtually a member in the PoC.arith namespace. So the module can be
identified by an unique name: PoC.arith.prng, which is passed to the frontend script.

Example 1:

cd PoCRoot
.\poc.ps1 ghdl PoC.arith.prng

The CLI command ghdl chooses GHDL Simulator as the simulator and passes the fully qualified PoC entity
name PoC.arith.prng as a parameter to the tool. All required source file are gathered and compiled to an
executable. Afterwards this executable is launched in CLI mode and it’s outputs are displayed in console:

4.7. Simulation 35

/_static/images/ghdl/arith_prng_tb.posh.png:alt:PowerShellconsoleoutputafterrunningPoC.arith.prngwithGHDL.


The PoC-Library Documentation, Release 1.1.6

Each testbench uses PoC’s simulation helper packages to count asserts and to track active stimuli and checker
processes. After a completed simulation run, an report is written to STDOUT or the simulator’s console. Note the
line SIMULATION RESULT = PASSED. For each simulated PoC entity, a line in the overall report is created.
It lists the runtime per testbench and the simulation status (... ERROR, FAILED, NO ASSERTS or PASSED).

Example 2:

Passing an additional option --gui to the service tool, opens the testbench in GUI-mode. If a waveform con-
figuration file is present (e.g. a *.gtkw file for GTKWave), then it is preloaded into the simulator’s waveform
viewer.

cd PoCRoot
.\poc.ps1 ghdl PoC.arith.prng --gui

The opened waveform viewer and displayed waveform should look like this:

4.7.3 Vendor Specific Testbenches

PoC is shipped with a set of well known FPGA development boards. This set is extended by a list of generic
boards, named after each supported FPGA vendor. These generic boards can be used in simulations to select a
representative FPGA of a supported device vendor. If no board or device name is passed to a testbench run, the
GENERIC board is chosen.

Board Name Target Board Target Device
GENERIC GENERIC GENERIC
Altera DE4 Stratix-IV 230
Lattice ECP5Versa ECP5-45UM
Xilinx KC705 Kintex-7 325T

A vendor specific testbench can be launched by passing either --board=xxx or --device=yyy as an addi-
tional parameter to the PoC scripts.

# Example 1 - A Lattice board
.\poc.ps1 ghdl PoC.arith.prng --board=Lattice
# Example 2 - A Altera Stratix IV board
.\poc.ps1 ghdl PoC.arith.prng --board=DE4
# Example 3 - A Xilinx Kintex-7 325T device
.\poc.ps1 ghdl PoC.arith.prng --device=XC7K325T-2FFG900

Note: Running vendor specific testbenches may require pre-compiled vendor libraries. Some simulators are
shipped with diverse pre-compiled libraries, others include scripts or user guides to pre-compile them on the
target system.

36 Chapter 4. Using PoC

/_static/images/gtkwave/arith_prng_tb.png:alt:GTKWavewaveformviewofPoC.arith.prng.


The PoC-Library Documentation, Release 1.1.6

PoC is shipped with a set of pre-compile scripts to offer a unified interface and common storage for all supported
vendor’s pre-compile procedures. See Pre-Compiling Vendor Libraries.

4.7.4 Running a Single Testbench

A testbench run is supervised by PoC’s PoCRoot\py\PoC.py service tool, which offers a consistent interface
to all simulators. Unfortunately, every platform has it’s specialties, so a wrapper script is needed as abstraction
from the host’s operating system. Depending on the choosen tool chain, the wrapper script will source or invoke
the vendor tool’s environment scripts to pre-load the needed environment variables, paths or license file settings.

The order of options to the frontend script is as following: <common options> <simulator> <module>
<simulator options>

The frontend offers several common options:

Common Option Description
-q –quiet Quiet-mode (print nothing)
-v –verbose Print more messages
-d –debug Debug mode (print everything)

–dryrun Run in dry-run mode

One of the following supported simulators can be choosen, if installed and configured in PoC:

Simulator Description
asim Active-HDL Simulator
cocotb Cocotb simulation using QuestaSim Simulator
ghdl GHDL Simulator
isim Xilinx ISE Simulator
vsim QuestaSim Simulator or ModelSim
xsim Xilinx Vivado Simulator

A testbench run can be interrupted by sending a keyboard interrupt to Python. On most operating systems this is
done by pressing Ctrl + C. If PoC runs multiple testbenches at once, all finished testbenches are reported with
there testbench result. The aborted testbench will be listed as errored.

Aldec Active-HDL

The command to invoke a simulation using Active-HDL is asim followed by a list of PoC entities. The following
options are supported for Active-HDL:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.
–std=[87|93|02|08] Select a VHDL standard. Default: 08

Note: GUI mode for Active-HDL is not yet supported.

Example:

cd PoCRoot
.\poc.ps1 asim PoC.arith.prng --std=93

4.7. Simulation 37



The PoC-Library Documentation, Release 1.1.6

Cocotb with QuestaSim backend

The command to invoke a Cocotb simulation using QuestaSim is cocotb followed by a list of PoC entities. The
following options are supported for Cocotb:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.

-g –gui Start the simulation in the QuestaSim GUI.

Note: Cocotb is currently only on Linux with QuestaSim supported. We are working to support the Windows
platform and the GHDL backend.

Example:

cd PoCRoot
.\poc.ps1 cocotb PoC.cache.par

GHDL (plus GTKwave)

The command to invoke a simulation using GHDL is ghdl followed by a list of PoC entities. The following
options are supported for GHDL:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.

-g –gui Start GTKwave, if installed. Open *.gtkw, if available.
–std=[87|93|02|08] Select a VHDL standard. Default: 08

Example:

cd PoCRoot
.\poc.ps1 ghdl PoC.arith.prng --board=Atlys -g

Mentor Graphics QuestaSim

The command to invoke a simulation using QuestaSim or ModelSim is vsim followed by a list of PoC entities.
The following options are supported for QuestaSim:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.

-g –gui Start the simulation in the QuestaSim GUI.
–std=[87|93|02|08] Select a VHDL standard. Default: 08

Example:

cd PoCRoot
.\poc.ps1 vsim PoC.arith.prng --board=DE4 --gui

38 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

If QuestaSim is started in GUI mode (--gui), PoC will provide several Tcl files (*.do) in the simulator’s
working directory to recompile, restart or rerun the current simulation. The rerun command is based on the saved
IP core’s run script, which may default to run -all.

Tcl Script Performed Tasks
recompile.do recompile and restart
relaunch.do recompile, restart and rerun
saveWaveform.do save the current waveform viewer settings

Xilinx ISE Simulator

The command to invoke a simulation using ISE Simulator (isim) is isim followed by a list of PoC entities. The
following options are supported for ISE Simulator:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.

-g –gui Start the simulation in the ISE Simulator GUI (iSim).

Example:

cd PoCRoot
.\poc.ps1 isim PoC.arith.prng --board=Atlys -g

Xilinx Vivado Simulator

The command to invoke a simulation using Vivado Simulator (isim) is xsim followed by a list of PoC entities.
The following options are supported for Vivado Simulator:

Simulator Option Description
–board=<BOARD> Specify a target board.
–device=<DEVICE> Specify a target device.

-g –gui Start Vivado in simulation mode.
–std=[93|08] Select a VHDL standard. Default: 93

Example:

cd PoCRoot
.\poc.ps1 xsim PoC.arith.prng --board=Atlys -g

4.7.5 Running a Group of Testbenches

Each simulator can be invoked with a space seperated list of PoC entiries or a wildcard at the end of the fully
qualified entity name.

Supported wildcard patterns are * and ?. Question mark refers to all entities in a PoC (sub-)namespace. Asterisk
refers to all PoC entiries in the current namespace and all sub-namespaces.

Examples for testbenches groups:

4.7. Simulation 39



The PoC-Library Documentation, Release 1.1.6

PoC entity list Description
PoC.arith.prng A single PoC entity: arith_prng
PoC.* All entities in the whole library
PoC.io.ddrio.? All entities in PoC.io.ddrio: ddrio_in, ddrio_inout,

ddrio_out
PoC.fifo.* PoC.cache.*
PoC.dstruct.*

All FIFO, cache and data-structure testbenches.

cd PoCRoot
.\poc.ps1 -q asim PoC.arith.prng PoC.io.ddrio.* PoC.sort.lru_cache

Resulting output:

4.7.6 Continuous Integration (CI)

All PoC testbenches are executed on every GitHub upload (push) via Travis-CI. The testsuite runs all testbenches
for the virtual board GENERIC with an FPGA device called GENERIC. We can’t run vendor dependent test-
benches, because we can’t upload the vendor simulation libraries to Travis-CI.

To reproduce the Travis-CI results on a local machine, run the following command. The -q option, launches the
frontend in quiet mode to reduce the command line messages:

cd PoCRoot
.\poc.ps1 -q ghdl PoC.*

40 Chapter 4. Using PoC

/_static/images/active-hdl/multiple.png:alt:ReportafterrunningmultipletestbenchesinActive-HDL.


The PoC-Library Documentation, Release 1.1.6

If the vendor libraries are available and pre-compiled, then it’s also possible to run a CI flow for a specific vendor.
This is an Altera example for the Terrasic DE4 board:

cd PoCRoot
.\poc.ps1 -q vsim PoC.* --board=DE4

See also:

PoC Configuration See the Configuration page on how to configure PoC and your installed simulator tool chains.
This is required to invoke the simulators.

Latest Travis-CI Report Browse the list of branches at Travis-CI.org.

4.8 Synthesis

4.8. Synthesis 41

/_static/images/ghdl/PoC_all.png
https://travis-ci.org/VLSI-EDA/PoC/branches


The PoC-Library Documentation, Release 1.1.6

Contents of this Page

• Overview

• Quick Example

• Running a single Synthesis

– Altera / Intel Quartus

– Lattice Diamond

– Xilinx ISE Synthesis Tool (XST)

– Xilinx ISE Core Generator

– Xilinx Vivado Synthesis

4.8.1 Overview

The Python infrastructure shipped with the PoC-Library can launch manual, half-automated and fully automated
synthesis runs. This can be done by invoking one of PoC’s frontend script:

• poc.sh: poc.sh <common options> <compiler> <module> <compiler options> Use
this fronend script on Darwin, Linux and Unix platforms.

• poc.ps1: poc.ps1 <common options> <compiler> <module> <compiler options>
Use this frontend script Windows platforms.

Attention: All Windows command line instructions are intended for Windows PowerShell, if not
marked otherwise. So executing the following instructions in Windows Command Prompt (cmd.exe)
won’t function or result in errors!

See also:

PoC Configuration See the Configuration page on how to configure PoC and your installed synthesis tool chains.
This is required to invoke the compilers.

Supported Compiler See the Intruction page for a list of supported compilers.

See also:

List of Supported FPGA Devices See this list to find a supported and well known target device.

List of Supported Development Boards See this list to find a supported and well known development board.

4.8.2 Quick Example

The following quick example uses the Xilinx Systesis Tool (XST) to synthesize a netlist for IP core
arith_prng (Pseudo Random Number Generator - PRNG). The VHDL file arith_prng.vhdl is located
at PoCRoot\src\arith and virtually a member in the PoC.arith namespace. So the module can be identified
by an unique name: PoC.arith.prng, which is passed to the frontend script.

Example 1:

cd PoCRoot
.\poc.ps1 xst PoC.arith.prng --board=KC705

42 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

The CLI command xst chooses Xilinx Synthesis Tool as the synthesizer and passes the fully qualified PoC entity
name PoC.arith.prng as a parameter to the tool. Additionally, the development board name is required to
load the correct my_config.vhdl file. All required source file are gathered and synthesized to a netlist.

4.8.3 Running a single Synthesis

A synthesis run is supervised by PoC’s PoCRoot\py\PoC.py service tool, which offers a consistent interface to all
synthesizers. Unfortunately, every platform has it’s specialties, so a wrapper script is needed as abstraction from
the host’s operating system. Depending on the choosen tool chain, the wrapper script will source or invoke the
vendor tool’s environment scripts to pre-load the needed environment variables, paths or license file settings.

The order of options to the frontend script is as following: <common options> <synthesizer>
<module> [<module>] <synthesizer options>

The frontend offers several common options:

Common Option Description
-q --quiet Quiet-mode (print nothing)
-v --verbose Print more messages
-d --debug Debug mode (print everything)

--dryrun Run in dry-run mode

One of the following supported synthesizers can be choosen, if installed and configured in PoC:

Synthesizer Command Reference
Altera Quartus II or Intel Quartus Prime PoC.py quartus
Lattice (Diamond) Synthesis Engine (LSE) PoC.py lse
Xilinx ISE Systhesis Tool (XST) PoC.py xst
Xilinx ISE Core Generator (CoreGen) PoC.py coregen
Xilinx Vivado Synthesis PoC.py vivado

4.8. Synthesis 43

/_static/images/xst/arith_prng.posh.png:alt:PowerShellconsoleoutputafterrunningPoC.arith.prngwithXST.


The PoC-Library Documentation, Release 1.1.6

Altera / Intel Quartus

The command to invoke a synthesis using Altera Quartus II or Intel Quartus Prime is quartus followed by a list of
PoC entities. The following options are supported for Quartus:

Simulator Option Description
--board=<Board> Specify a target board.
--device=<Device> Specify a target device.

Example:

cd PoCRoot
.\poc.ps1 quartus PoC.arith.prng --board=DE4

Lattice Diamond

The command to invoke a synthesis using Lattice Diamond is lse followed by a list of PoC entities. The following
options are supported for the Lattice Synthesis Engine (LSE):

Simulator Option Description
--board=<Board> Specify a target board.
--device=<Device> Specify a target device.

Example:

cd PoCRoot
.\poc.ps1 lse PoC.arith.prng --board=ECP5Versa

Xilinx ISE Synthesis Tool (XST)

The command to invoke a synthesis using Xilinx ISE Synthesis is xst followed by a list of PoC entities. The
following options are supported for the Xilinx Synthesis Tool (XST):

Simulator Option Description
--board=<Board> Specify a target board.
--device=<Device> Specify a target device.

Example:

cd PoCRoot
.\poc.ps1 xst PoC.arith.prng --board=KC705

Xilinx ISE Core Generator

The command to invoke an IP core generation using Xilinx Core Generator is coregen followed by a list of PoC
entities. The following options are supported for Core Generator (CG):

Simulator Option Description
--board=<Board> Specify a target board.
--device=<Device> Specify a target device.

44 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

Example:

cd PoCRoot
.\poc.ps1 coregen PoC.xil.mig.Atlys_1x128 --board=Atlys

Xilinx Vivado Synthesis

The command to invoke a synthesis using Xilinx Vivado Synthesis is vivado followed by a list of PoC entities.
The following options are supported for Vivado Synthesis (Synth):

Simulator Option Description
--board=<Board> Specify a target board.
--device=<Device> Specify a target device.

Example:

cd PoCRoot
.\poc.ps1 vivado PoC.arith.prng --board=KC705

4.9 Project Management

4.9.1 Overview

4.9.2 Solutions

4.9.3 Projects

4.10 Pre-Compiling Vendor Libraries

Contents of this Page

• Overview

• Supported Simulators

• FPGA Vendor’s Primitive Libraries

– Altera

– Lattice

– Xilinx ISE

– Xilinx Vivado

• Third-Party Libraries

– OSVVM

– UVVM

• Simulator Adapters

– Cocotb

4.9. Project Management 45



The PoC-Library Documentation, Release 1.1.6

4.10.1 Overview

Running vendor specific testbenches may require pre-compiled vendor libraries. Some vendors ship their simula-
tors with diverse pre-compiled libraries, but these don’t include primitive libraries from hardware vendors. More
over, many auxillary libraries are outdated. Hardware vendors ship their tool chains with pre-compile scripts or
user guides to pre-compile the primitive libraries for a list of supported simulators on a target system.

PoC is shipped with a set of pre-compile scripts to offer a unified interface and common storage for all supported
vendor’s pre-compile procedures. The scripts are located in \tools\precompile\ and the output is stored in
\temp\precompiled\<Simulator>\<Library>.

4.10.2 Supported Simulators

The current set of pre-compile scripts support these simulators:

Vendor Simulator and
Edition

Altera Lattice Xilinx (ISE) Xilinx (Vivado)

T. Gingold
GHDL with
--std=93c
GHDL with
--std=08

yes yes yes yes yes yes yes yes

Aldec Active-HDL
(or Studu-
dent Ed.)
Active-HDL
Lattice Ed.
Reviera-PRO

planned
planned
planned

planned
shipped
planned

planned
planned
planned

planned
planned
planned

Mentor ModelSim PE
(or Stududent
Ed.) ModelSim
SE ModelSim
Altera Ed.
QuestaSim

yes yes shipped
yes

yes yes yes yes yes yes yes yes yes yes yes yes

Xilinx ISE Simulator
Vivado Simula-
tor

shipped not
supported

not supported
shipped

4.10.3 FPGA Vendor’s Primitive Libraries

Altera

Note: The Altera Quartus tool chain needs to be configured in PoC. See Configuring PoC’s Infrastruture for
further details.

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-altera.sh --all
# Example 2 - Compile only for GHDL and VHDL-2008
./tools/precompile/compile-altera.sh --ghdl --vhdl2008

46 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.
--vhdl93 GHDL only: Compile only for VHDL-93.
--vhdl2008 GHDL only: Compile only for VHDL-2008.

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-altera.ps1 -All
# Example 2 - Compile only for GHDL and VHDL-2008
.\tools\precompile\compile-altera.ps1 -GHDL -VHDL2008

List of command line arguments:

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.
-VHDL93 GHDL only: Compile only for VHDL-93.
-VHDL2008 GHDL only: Compile only for VHDL-2008.

Lattice

Note: The Lattice Diamond tool chain needs to be configured in PoC. See Configuring PoC’s Infrastruture for
further details.

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-lattice.sh --all
# Example 2 - Compile only for GHDL and VHDL-2008
./tools/precompile/compile-lattice.sh --ghdl --vhdl2008

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.
--vhdl93 GHDL only: Compile only for VHDL-93.
--vhdl2008 GHDL only: Compile only for VHDL-2008.

4.10. Pre-Compiling Vendor Libraries 47



The PoC-Library Documentation, Release 1.1.6

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-lattice.ps1 -All
# Example 2 - Compile only for GHDL and VHDL-2008
.\tools\precompile\compile-lattice.ps1 -GHDL -VHDL2008

List of command line arguments:

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.
-VHDL93 GHDL only: Compile only for VHDL-93.
-VHDL2008 GHDL only: Compile only for VHDL-2008.

Xilinx ISE

Note: The Xilinx ISE tool chain needs to be configured in PoC. See Configuring PoC’s Infrastruture for further
details.

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-xilinx-ise.sh --all
# Example 2 - Compile only for GHDL and VHDL-2008
./tools/precompile/compile-xilinx-ise.sh --ghdl --vhdl2008

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.
--vhdl93 GHDL only: Compile only for VHDL-93.
--vhdl2008 GHDL only: Compile only for VHDL-2008.

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-xilinx-ise.ps1 -All
# Example 2 - Compile only for GHDL and VHDL-2008
.\tools\precompile\compile-xilinx-ise.ps1 -GHDL -VHDL2008

List of command line arguments:

48 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.
-VHDL93 GHDL only: Compile only for VHDL-93.
-VHDL2008 GHDL only: Compile only for VHDL-2008.

Xilinx Vivado

Note: The Xilinx Vivado tool chain needs to be configured in PoC. See Configuring PoC’s Infrastruture for
further details.

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-xilinx-vivado.sh --all
# Example 2 - Compile only for GHDL and VHDL-2008
./tools/precompile/compile-xilinx-vivado.sh --ghdl --vhdl2008

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.
--vhdl93 GHDL only: Compile only for VHDL-93.
--vhdl2008 GHDL only: Compile only for VHDL-2008.

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-xilinx-vivado.ps1 -All
# Example 2 - Compile only for GHDL and VHDL-2008
.\tools\precompile\compile-xilinx-vivado.ps1 -GHDL -VHDL2008

List of command line arguments:

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.
-VHDL93 GHDL only: Compile only for VHDL-93.
-VHDL2008 GHDL only: Compile only for VHDL-2008.

4.10. Pre-Compiling Vendor Libraries 49



The PoC-Library Documentation, Release 1.1.6

4.10.4 Third-Party Libraries

OSVVM

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-osvvm.sh --all
# Example 2 - Compile only for GHDL
./tools/precompile/compile-osvvm.sh --ghdl

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-osvvm.ps1 -All
# Example 2 - Compile only for GHDL
.\tools\precompile\compile-osvvm.ps1 -GHDL

List of command line arguments:

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.

UVVM

On Linux

# Example 1 - Compile for all Simulators
./tools/precompile/compile-uvvm.sh --all
# Example 2 - Compile only for GHDL
./tools/precompile/compile-uvvm.sh --ghdl

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.

50 Chapter 4. Using PoC



The PoC-Library Documentation, Release 1.1.6

On Windows

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-uvvm.ps1 -All
# Example 2 - Compile only for GHDL
.\tools\precompile\compile-uvvm.ps1 -GHDL

List of command line arguments:

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.

4.10.5 Simulator Adapters

Cocotb

On Linux

Attention: This is an experimental compile script.

# Example 1 - Compile for all Simulators
./tools/precompile/compile-cocotb.sh --all
# Example 2 - Compile only for GHDL
./tools/precompile/compile-cocotb.sh --ghdl

List of command line arguments:

Common Option Parameter Description
-h --help Print embedded help page(s).
-c --clean Clean-up directories.
-a --all Compile for all simulators.

--ghdl Compile for GHDL.
--questa Compile for QuestaSim.

On Windows

Attention: This is an experimental compile script.

# Example 1 - Compile for all Simulators
.\tools\precompile\compile-cocotb.ps1 -All
# Example 2 - Compile only for GHDL
.\tools\precompile\compile-cocotb.ps1 -GHDL

List of command line arguments:

4.10. Pre-Compiling Vendor Libraries 51



The PoC-Library Documentation, Release 1.1.6

Common Option Parameter Description
-h -Help Print embedded help page(s).
-c -Clean Clean-up directories.
-a -All Compile for all simulators.

-GHDL Compile for GHDL.
-Questa Compile for QuestaSim.

4.11 Miscellaneous

The directory PoCRoot\tools\ contains several tools and addons to ease the work with the PoC-Library and
VHDL.

4.11.1 GNU Emacs

Todo: No documentation available.

4.11.2 Git

• git-alias.setup.ps1/git-alias.setup.sh registers new global aliasses in Git

– git tree - Prints the colored commit tree into the console

– git treea - Prints the colored commit tree into the console

git config --global alias.tree 'log --decorate --pretty=oneline --abbrev-
→˓commit --date-order --graph'
git config --global alias.tree 'log --decorate --pretty=oneline --abbrev-
→˓commit --date-order --graph --all'

Browse the Git directory.

4.11.3 Notepad++

The PoC-Library is shipped with syntax highlighting rules for Notepad++. The following additional file types are
supported:

• PoC Configuration Files (*.ini)

• PoC .Files Files (.files)

• PoC .Rules Files (.rules)

• Xilinx User Constraint Files (*.ucf): Syntax Highlighting - Xilinx UCF

Browse the Notepad++ directory.

52 Chapter 4. Using PoC

https://github.com/VLSI-EDA/PoC/tree/master/tools/git
https://notepad-plus-plus.org/
https://github.com/VLSI-EDA/PoC/tree/master/tools/Notepad%2B%2B


CHAPTER 5

Third Party Libraries

The pyIPCMI is shipped with different third party libraries, which are located in the <pyIPCMIRoot>/lib/
folder. This document lists all these libraries, their websites and licenses.

53



The PoC-Library Documentation, Release 1.1.6

54 Chapter 5. Third Party Libraries



Part III

References

55





CHAPTER 6

IP Core Management Infrastructure

57



The PoC-Library Documentation, Release 1.1.6

58 Chapter 6. IP Core Management Infrastructure



Part IV

Appendix

59





CHAPTER 7

Change Log

61



The PoC-Library Documentation, Release 1.1.6

62 Chapter 7. Change Log



CHAPTER 8

Index

63



The PoC-Library Documentation, Release 1.1.6

64 Chapter 8. Index



Python Module Index

p
pyIPCMI, 57

65



The PoC-Library Documentation, Release 1.1.6

66 Python Module Index



Index

A
Altera

Pre-compilation, 46

C
Cocotb

Pre-compilation, 51

L
Lattice

Pre-compilation, 47

O
OSVVM

Pre-compilation, 50

P
Pre-compilation, 45

Altera, 46
Cocotb, 51
Lattice, 47
OSVVM, 50
Simulator Adapters, 51
Supported Simulators, 46
Third-Party Libraries, 49
UVVM, 50
Vendor Primitives, 46
Xilinx ISE, 48
Xilinx Vivado, 49

pyIPCMI (module), 57

S
Simulator Adapters

Pre-compilation, 51
Supported Simulators

Pre-compilation, 46

T
Third-Party Libraries, 52

Pre-compilation, 49

U
UVVM

Pre-compilation, 50

V
Vendor Primitives

Pre-compilation, 46

X
Xilinx ISE

Pre-compilation, 48
Xilinx Vivado

Pre-compilation, 49

67


	I Introduction
	What is pyIPCMI?
	What is the History of PoC?
	Which Tool Chains are supported?
	Why should I use PoC?
	Who uses PoC?

	Quick Start Guide
	Requirements and Dependencies
	Download
	Configuring PoC on a Local System
	Integration
	Run a Simulation
	Run a Synthesis
	Updating

	Get Involved
	Report a Bug
	Feature Request
	Talk to us on Gitter
	Contributers License Agreement
	Contribute to PoC
	Give us Feedback
	List of Contributers


	II Main Documentation
	Using PoC
	Requirements
	Downloading PoC
	Integrating PoC into Projects
	Configuring PoC’s Infrastructure
	Creating my_config/my_project.vhdl
	Adding IP Cores to a Project
	Simulation
	Synthesis
	Project Management
	Pre-Compiling Vendor Libraries
	Miscellaneous

	Third Party Libraries

	III References
	IP Core Management Infrastructure

	IV Appendix
	Change Log
	Index
	Python Module Index
	Index


